Design and Operation of Farm Irrigation Systems

2nd edition

Glenn J. Hoffman
Robert G. Evans
Marvin E. Jensen
Derrel L. Martin
Ronald L. Elliott
PREFACE

Irrigated agriculture has played an important role in food production during the past century and will become even more important as the global population continues to increase. The internet has hastened the dissemination of new irrigation technology and water management guidelines developed by specialists. Personal computers have facilitated complex calculations and control of automated irrigation systems. However, there is still a need for irrigation system designers and system operators to have a comprehensive book on farm irrigation systems readily available. This monograph has been widely disseminated since first published in 1980 and reprinted in 1982. This second edition is expected to meet an important need for several future decades.

Publication of this monograph culminates a decade of effort. Planning the second edition first started in 1994 when a group met informally at a meeting of the American Society of Agricultural Engineers to discuss the need for an updated version of the first irrigation monograph. Ronald Elliott and Marvin Jensen began the organizational and editorial processes. Leading experts in their respective areas were asked to write various chapters. In 2000, because Elliott’s new assignment restricted his time for this work and Jensen’s time was limited because of his involvement in several water use studies, work on this edition was delayed. In 2002, the SW-24 Group chaired by Robert Evans established a new editorial committee consisting of Glenn Hoffman, Robert Evans, Gary Clark, and Derrel Martin to share the load of this monumental task. The committee met in Denver in November, 2002, to review the status of the revised chapters, to add new chapters, set new target dates, and to make review assignments. Elliott indicated that he did not wish to continue an active role and in August, 2005, Gary Clark assumed a new position and no longer had time to continue as an editor. The remaining work load was redistributed to Evans, Hoffman, Jensen, and Martin.

This edition provides the latest technology in the design of surface, sprinkler, and microirrigation systems along with basic information about soils and current information on estimating crop water requirements. New chapters have been added on planning systems, environmental issues, efficiency and uniformity, chemigation, and use of wastewater for irrigation.

As is the case with all ASABE monographs, the Society is indebted to many individuals who contributed significantly to the planning, writing, reviewing, editing, and publishing of this book. The sharing of their knowledge, time, and patience in the production of this book is greatly appreciated. All of the editors are extremely grateful for the opportunity to work with so many dedicated and enthusiastic engineers and scientists in completing this project. The assistance of the ASABE staff, especially Peg McCann, in editing and producing this monograph is especially appreciated.

The Editors: Glenn J. Hoffman
Robert G. Evans
Marvin E. Jensen
Derrel L. Martin
Ronald L. Elliott

August, 2007
THE AUTHORS

Richard G. Allen, University of Idaho Research and Extension Center, 3793 North 3600 East, Kimberly, ID 83341
James E. Ayars, USDA-ARS Water Management Research Laboratory, 9611 South Riverbend Ave., Parlier, CA 93648
Evan W. Christen, CSIRO Land and Water, Griffith, New South Wales 2680, Australia
Allan W. Clark, Clark Brothers, Inc., 19772 South Elgin, Dos Palos, CA 93620
Albert J. Clemmens, USDA-ARS Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85238
Allen R. Dedrick, USDA-ARS National Program Staff, Beltsville, MD (retired). Current address: 608 West Villa Rita Dr., Phoenix, AZ 85023
Keith O. Eggleston, Water Quality, U.S. Bureau of Reclamation, Denver Federal Center, P.O. Box 25007 (D-5724), Denver, CO 80225 (retired)
Dean E. Eisenhauer, Department of Biological Systems Engineering, 232 Chase Hall, University of Nebraska, Lincoln, NE 68583
Abd El-Ghani M. El-Gindy, Agricultural Mechanization Department, Faculty of Agriculture, Ain-Shams University, Cairo, Egypt
Ronald L. Elliott, Biosystems and Agricultural Engineering Department, 111 Ag Hall, Oklahoma State University, Stillwater, OK 74078
Robert G. Evans, USDA-ARS Northern Plains Agricultural Research Laboratory, 1500 North Central Avenue, Sidney, MN 59270
Robert O. Evans, Biological and Agricultural Engineering Department, P.O. Box 7625, North Carolina State University, Raleigh, NC 27695
Delmar D. Fangmeier, University of Arizona, Tucson (retired). Current address: 848 West Safari Dr., Tucson, AZ 85704
James L. Fouss, USDA-ARS Soil and Water Research Unit, 4115 Gourrier Ave., Baton Rouge, LA 70808
Ronald J. Gaddis, A B Consulting Co., Inc., Lincoln, NE (retired). Current address: 8100 Sanborn Dr., Lincoln, NE 68505
Leland A. Hardy, H & R Engineering, Inc., 690 Loring Dr. NW, Salem, OR 97304
Dale F. Heermann, USDA-ARS Water Management Research, Natural Resources Research Center, 2150 Centre Ave., Building D, Suite 320, Fort Collins, CO 80526 (retired)
Glenn J. Hoffman, Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE (retired). Current address: 9203 N. Crown Ridge, Fountain Hills, AZ 85268
Sagit R. Ibatullin, Water Economy Research Institute, 12 Kolbasshy Koygeldy Str., 480022 Taraz City, Kazakhstan
Marvin E. Jensen, USDA-ARS National Program Staff, Fort Collins, CO (retired). Current address: 1207 Springwood Dr., Fort Collins, CO 80525
Dennis C. Kincaid, USDA-ARS, Kimberly, ID (retired). Current address: 3849B North 3700 East, Hansen, ID 83334
Larry G. King, Department Agricultural and Biological Systems Engineering, Washington State University, Pullman, WA (retired). Current address: 19855 East Silver Creek Lane, Queen Creek, AZ 85242
E. Gordon Kruse, USDA-ARS Water Management Research, Fort Collins, CO (retired). Current address: 4740 Player Dr., Fort Collins, CO 80525
Joseph M. Lord, Jr., JMLord, Inc., 267 North Fulton St., Fresno, CA 93701
William M. Lyle, Texas A&M University, Lubbock, TX (retired). Current address: Box 1679, Hilltop Lakes, TX 77871
Mark Madison, CH2M Hill, 2020 SW 4th Ave., Portland, OR 97201
Derrel L. Martin, Department of Biological Systems Engineering, 243 Chase Hall, University of Nebraska, Lincoln, NE 68583
Anne M. S. McFarland, Texas Institute for Applied Environmental Research, Tarleton State University, 201 St. Felix Street, Stephenville, TX 76401
Marshall J. McFarland, Agricultural Research and Extension Center, Stephenville, TX (retired). Current address: 1025 Darren Drive, Stephenville, TX 76401
Alan W. Moore, Cameron County Drainage District 5, 301 East Pierce St., Harlingen, TX 78550
Luis S. Pereira, Technical University of Lisbon, Lisbon, Portugal. Current address: Instituto Superior de Agronomia, Departamento Engenharia Rural, Tapada da Ajuda, Lisboa Codex 1399, Portugal
William O. Pruitt, University of California, Davis, CA (retired). Current address: 804 West 8th St., Davis, CA 95616
John A. Replogle, USDA-ARS Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85238
Matt A. Sanderson, USDA-ARS Pasture Systems and Watershed Management Research Unit, Building 3702, Curtin Rd., University Park, PA 16802
Joseph Shalhevet, Institute of Soil, Water and Environmental Science, Agricultural Research Organization, Bet Dagan, Israel (retired). Current address: 14 Einstein Street, Rehovot 76470, Israel
Allen G. Smajstrala, Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL (deceased)
Roger E. Smith, USDA-ARS, Fort Collins, CO. Current address: Colorado State University, 2150 Centre Ave., Building D, Fort Collins, CO 80526
Kenneth H. Solomon, BioResource and Agricultural Engineering Department, California Polytechnic State University, San Luis Obispo, CA (retired). Current address: 190 Kodiak St., Morro Bay, CA 93442
Dean D. Steele, Department of Agricultural and Biosystems Engineering, North Dakota State University, 1221 Albrecht Blvd., P.O. Box 5626, Fargo, ND 58105
Theodor S. Strelkoff, USDA-ARS Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85238
Thomas J. Trout, USDA-ARS Water Management Research, Natural Resources Research Center, 2150 Centre Ave., Building D, Suite 320, Fort Collins, CO 80526
Ted W. van der Gulik, Resource Management Branch, BC Ministry of Agriculture and Lands, 1767 Angus Campbell Rd., Abbotsford, BC V3G 2E5, Canada
Wynn R. Walker, College of Engineering, Utah State University, Logan, UT 84322
Arthur W. Warrick, Department of Soils, Water and Environmental Science, Shantz Building, P.O. Box 210038, University of Arizona, Tucson, AZ 85721
Lyman S. Willardson, Utah State University, Logan, UT (deceased)
James L. Wright, USDA-ARS Northwest Irrigation and Soils Research Laboratory, Kimberly, ID (retired)
I-Pai Wu, Department of Biosystems Engineering, University of Hawaii, Honolulu, HI (retired)
CONTENTS

Preface ..iii
The Authors ..v

Chapter 1
Introduction .. 1
1.1 Overview .. 1
1.2 Worldwide Irrigation Development .. 2
1.3 Irrigation Development in the United States .. 7
1.4 Issues Facing Irrigated Agriculture .. 12
1.5 Future Directions ... 23
References .. 30

Chapter 2
Sustainable and Productive Irrigated Agriculture .. 33
2.1 Introduction ... 33
2.2 Role of Irrigation in Food and Fiber Production ... 37
2.3 Crop Production and Irrigation Water Requirements .. 43
2.4 System Design and Increasing Competition for Renewable Water Supplies 46
2.5 Irrigation Water Management During Droughts .. 49
2.6 Other Agricultural Purposes and Benefits of Irrigation 49
2.7 System Design and Operation Challenges ... 50
2.8 Summary .. 51
References .. 52

Chapter 3
Planning and System Selection ... 57
3.1 Introduction ... 57
3.2 Planning for Irrigation .. 61
3.3 Irrigation System Selection ... 66
References .. 75

Chapter 4
Environmental Considerations ... 76
4.1 Introduction ... 76
4.2 Water Storage, Diversion, and Consumption ... 80
4.3 Groundwater Quality .. 85
4.4 Surface Water Runoff ... 93
References .. 100

Chapter 5
Efficiency and Uniformity .. 108
5.1 Introduction ... 108
Contents

5.2 Irrigation Scheme Physical Models ... 109
5.3 Irrigation Performance Parameter Definitions .. 111
5.4 Summary ... 118
References ... 118

Chapter 6

Soil Water Relationships

6.1 Introduction ... 120
6.2 Water-Holding Characteristics of Soils ... 120
6.3 Soil Hydraulic Conductivity ... 135
6.4 Water Movement in Soil .. 139
6.5 Complicating Factors .. 150
List of Symbols .. 154
References ... 155

Chapter 7

Controlling Salinity

7.1 Introduction ... 160
7.2 Quantifying Salinity Hazards ... 164
7.3. Crop Tolerance ... 168
7.4. Leaching ... 178
7.5 Salinity Impacts on Irrigation Design ... 187
7.6 Salinity Management Practices ... 193
7.7 Summary and Conclusions .. 201
References ... 201

Chapter 8

Water Requirements

8.1 Introduction ... 208
8.2 Definitions ... 209
8.3 Direct Measurements ... 211
8.4 Estimation of Reference ET ... 212
8.5 Estimating ET for Crops ... 227
8.6 Evapotranspiration Coefficients for Landscapes .. 258
8.7 Estimating Kc from Fraction of Cover .. 265
8.8 Effect of Irrigation Method on Kc ... 266
8.9 Effects of Surface Mulching on Kc ... 266
8.10 Precipitation Runoff .. 267
8.11 Other Water Requirements .. 270
8.12 Effective Rainfall ... 272
8.13 Design Requirements ... 272
8.14 Annual Irrigation Water Requirements ... 277
List of Symbols ... 278
References ... 281
Chapter 13
Hydraulics of Surface Systems 436
13.1 Introduction ... 436
13.2 Basic Concepts of Surface Irrigation Hydraulics .. 438
13.3 Variables That Influence the Surface Irrigation Process 441
13.4 Conservation Laws for Mass and Momentum ... 451
13.5 Hydrologic Modeling of the Surface Irrigation Process 452
13.6 Hydrodynamic Modeling of the Surface Irrigation Process 461
13.7 Estimation of Field Parameters .. 479
References ... 491

Chapter 14
Design of Surface Systems 499
14.1 Introduction ... 499
14.2 Design Considerations and Approaches .. 500
14.3 Sloping-Furrow Irrigation .. 509
14.4 Border-Strip Irrigation ... 518
14.5 Level-Basin and Level-Furrow Irrigation .. 524
14.6 Surface Irrigation System Headworks and Control of Inflow 528
References ... 530

Chapter 15
Hydraulics of Sprinkler and Microirrigation Systems 532
15.1 Introduction ... 532
15.2 Hydraulics of Pipe Systems ... 533
15.3 Irrigation System Valves ... 547
15.4 Water Distribution to the Soil ... 554
15.5 Redistribution in the Soil ... 554
15.6 Summary ... 554
List of Symbols ... 555
References ... 556

Chapter 16
Design and Operation of Sprinkler Systems 557
16.1 Introduction ... 557
16.2 Components of Sprinkler Systems .. 558
16.3 Design Fundamentals ... 560
16.4 Application Uniformity ... 576
16.5 Solid Set Systems ... 580
16.6 Periodically Moved Laterals .. 587
16.7 Center Pivots .. 595
16.8 Lateral Move Systems ... 613
16.9 Low Energy Precision Application (LEPA) Systems .. 618
16.10 Travelers ... 621
16.11 Auxiliary Uses of Sprinkler Systems ... 626
16.12 Safety .. 626
Chapter 17
Microirrigation Systems

17.1 Introduction ... 632
17.2 Microirrigation Systems ... 638
17.3 Design Factors .. 642
17.4 Hydraulics of Emitters and Emitter Design Variation 647
17.5 Microirrigation Design ... 652
17.6 Designing the System Control Head .. 656
17.7 Installation .. 658
17.8 Maintenance ... 658
17.9 Management ... 661
17.10 Scheduling Microirrigation .. 664
17.11 Plugging of Microirrigation Systems.. 666
17.12 Subsurface Drip Irrigation .. 668
17.13 Subirrigation ... 675
17.14 Microirrigation in Nurseries and Greenhouses ... 675
References ... 677

Chapter 18
Water Table Control Systems

18.1 Introduction ... 685
18.2 Management of Soil Water by Water Table Control ... 686
18.3 System Design and Operation in Humid Regions .. 691
18.4 System Design and Operation in Arid Regions .. 703
18.5 Documentation of System Design and Installation ... 717
18.6 Summary ... 717
References ... 718

Chapter 19
Chemigation

19.1 Introduction ... 725
19.2 Backflow Prevention and Safety ... 727
19.3 Injection Systems ... 732
19.4 Injection System Calibration .. 739
19.5 Irrigation System Considerations .. 741
19.6 Calculating Injection Rates .. 750
References ... 752

Chapter 20
Wastewater and Reclaimed Water Irrigation

20.1 Introduction ... 754
20.2 Constituents and Characteristics of Wastewater and Reclaimed Water 756
Chapter 21
Evaluating Performance

21.1 Introduction ... 790
21.2 Management Variables .. 792
21.3 Measures of Performance .. 794
21.4 Field Evaluation Methods .. 798
21.5 Economics ... 799
21.6 Analysis and Interpretation .. 800
21.7 Mobile Labs ... 801
21.8 Outline for Evaluations .. 802
21.9 Conclusions ... 802
References ... 803

Appendix A
Glossary ... 804

Appendix B
Annotated Bibliography of Irrigation Standards 838

Index ... 851